Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
IMPL2(x, y) -> XOR2(and2(x, y), xor2(x, T))
OR2(x, y) -> XOR2(x, y)
OR2(x, y) -> AND2(x, y)
IMPL2(x, y) -> AND2(x, y)
IMPL2(x, y) -> XOR2(x, T)
AND2(xor2(x, y), z) -> AND2(y, z)
AND2(xor2(x, y), z) -> AND2(x, z)
EQUIV2(x, y) -> XOR2(y, T)
OR2(x, y) -> XOR2(and2(x, y), xor2(x, y))
AND2(xor2(x, y), z) -> XOR2(and2(x, z), and2(y, z))
NEG1(x) -> XOR2(x, T)
EQUIV2(x, y) -> XOR2(x, xor2(y, T))
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
IMPL2(x, y) -> XOR2(and2(x, y), xor2(x, T))
OR2(x, y) -> XOR2(x, y)
OR2(x, y) -> AND2(x, y)
IMPL2(x, y) -> AND2(x, y)
IMPL2(x, y) -> XOR2(x, T)
AND2(xor2(x, y), z) -> AND2(y, z)
AND2(xor2(x, y), z) -> AND2(x, z)
EQUIV2(x, y) -> XOR2(y, T)
OR2(x, y) -> XOR2(and2(x, y), xor2(x, y))
AND2(xor2(x, y), z) -> XOR2(and2(x, z), and2(y, z))
NEG1(x) -> XOR2(x, T)
EQUIV2(x, y) -> XOR2(x, xor2(y, T))
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 10 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
AND2(xor2(x, y), z) -> AND2(y, z)
AND2(xor2(x, y), z) -> AND2(x, z)
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
AND2(xor2(x, y), z) -> AND2(y, z)
AND2(xor2(x, y), z) -> AND2(x, z)
Used argument filtering: AND2(x1, x2) = x1
xor2(x1, x2) = xor2(x1, x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
xor2(x, F) -> x
xor2(x, neg1(x)) -> F
and2(x, T) -> x
and2(x, F) -> F
and2(x, x) -> x
and2(xor2(x, y), z) -> xor2(and2(x, z), and2(y, z))
xor2(x, x) -> F
impl2(x, y) -> xor2(and2(x, y), xor2(x, T))
or2(x, y) -> xor2(and2(x, y), xor2(x, y))
equiv2(x, y) -> xor2(x, xor2(y, T))
neg1(x) -> xor2(x, T)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.